Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The metagenome of an anaerobic microbial community decomposing poplar wood chips.

Identifieur interne : 002884 ( Main/Exploration ); précédent : 002883; suivant : 002885

The metagenome of an anaerobic microbial community decomposing poplar wood chips.

Auteurs : Daniel Van Der Lelie [États-Unis] ; Safiyh Taghavi ; Sean M. Mccorkle ; Luen-Luen Li ; Stephanie A. Malfatti ; Denise Monteleone ; Bryon S. Donohoe ; Shi-You Ding ; William S. Adney ; Michael E. Himmel ; Susannah G. Tringe

Source :

RBID : pubmed:22629327

Descripteurs français

English descriptors

Abstract

This study describes the composition and metabolic potential of a lignocellulosic biomass degrading community that decays poplar wood chips under anaerobic conditions. We examined the community that developed on poplar biomass in a non-aerated bioreactor over the course of a year, with no microbial inoculation other than the naturally occurring organisms on the woody material. The composition of this community contrasts in important ways with biomass-degrading communities associated with higher organisms, which have evolved over millions of years into a symbiotic relationship. Both mammalian and insect hosts provide partial size reduction, chemical treatments (low or high pH environments), and complex enzymatic 'secretomes' that improve microbial access to cell wall polymers. We hypothesized that in order to efficiently degrade coarse untreated biomass, a spontaneously assembled free-living community must both employ alternative strategies, such as enzymatic lignin depolymerization, for accessing hemicellulose and cellulose and have a much broader metabolic potential than host-associated communities. This would suggest that such a community would make a valuable resource for finding new catalytic functions involved in biomass decomposition and gaining new insight into the poorly understood process of anaerobic lignin depolymerization. Therefore, in addition to determining the major players in this community, our work specifically aimed at identifying functions potentially involved in the depolymerization of cellulose, hemicelluloses, and lignin, and to assign specific roles to the prevalent community members in the collaborative process of biomass decomposition. A bacterium similar to Magnetospirillum was identified among the dominant community members, which could play a key role in the anaerobic breakdown of aromatic compounds. We suggest that these compounds are released from the lignin fraction in poplar hardwood during the decay process, which would point to lignin-modification or depolymerization under anaerobic conditions.

DOI: 10.1371/journal.pone.0036740
PubMed: 22629327
PubMed Central: PMC3357426


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The metagenome of an anaerobic microbial community decomposing poplar wood chips.</title>
<author>
<name sortKey="Van Der Lelie, Daniel" sort="Van Der Lelie, Daniel" uniqKey="Van Der Lelie D" first="Daniel" last="Van Der Lelie">Daniel Van Der Lelie</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biology Department, Brookhaven National Laboratory, Upton, New York, United States of America. vdlelied@rti.org</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biology Department, Brookhaven National Laboratory, Upton, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Taghavi, Safiyh" sort="Taghavi, Safiyh" uniqKey="Taghavi S" first="Safiyh" last="Taghavi">Safiyh Taghavi</name>
</author>
<author>
<name sortKey="Mccorkle, Sean M" sort="Mccorkle, Sean M" uniqKey="Mccorkle S" first="Sean M" last="Mccorkle">Sean M. Mccorkle</name>
</author>
<author>
<name sortKey="Li, Luen Luen" sort="Li, Luen Luen" uniqKey="Li L" first="Luen-Luen" last="Li">Luen-Luen Li</name>
</author>
<author>
<name sortKey="Malfatti, Stephanie A" sort="Malfatti, Stephanie A" uniqKey="Malfatti S" first="Stephanie A" last="Malfatti">Stephanie A. Malfatti</name>
</author>
<author>
<name sortKey="Monteleone, Denise" sort="Monteleone, Denise" uniqKey="Monteleone D" first="Denise" last="Monteleone">Denise Monteleone</name>
</author>
<author>
<name sortKey="Donohoe, Bryon S" sort="Donohoe, Bryon S" uniqKey="Donohoe B" first="Bryon S" last="Donohoe">Bryon S. Donohoe</name>
</author>
<author>
<name sortKey="Ding, Shi You" sort="Ding, Shi You" uniqKey="Ding S" first="Shi-You" last="Ding">Shi-You Ding</name>
</author>
<author>
<name sortKey="Adney, William S" sort="Adney, William S" uniqKey="Adney W" first="William S" last="Adney">William S. Adney</name>
</author>
<author>
<name sortKey="Himmel, Michael E" sort="Himmel, Michael E" uniqKey="Himmel M" first="Michael E" last="Himmel">Michael E. Himmel</name>
</author>
<author>
<name sortKey="Tringe, Susannah G" sort="Tringe, Susannah G" uniqKey="Tringe S" first="Susannah G" last="Tringe">Susannah G. Tringe</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22629327</idno>
<idno type="pmid">22629327</idno>
<idno type="doi">10.1371/journal.pone.0036740</idno>
<idno type="pmc">PMC3357426</idno>
<idno type="wicri:Area/Main/Corpus">002A24</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002A24</idno>
<idno type="wicri:Area/Main/Curation">002A24</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002A24</idno>
<idno type="wicri:Area/Main/Exploration">002A24</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The metagenome of an anaerobic microbial community decomposing poplar wood chips.</title>
<author>
<name sortKey="Van Der Lelie, Daniel" sort="Van Der Lelie, Daniel" uniqKey="Van Der Lelie D" first="Daniel" last="Van Der Lelie">Daniel Van Der Lelie</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biology Department, Brookhaven National Laboratory, Upton, New York, United States of America. vdlelied@rti.org</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biology Department, Brookhaven National Laboratory, Upton, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Taghavi, Safiyh" sort="Taghavi, Safiyh" uniqKey="Taghavi S" first="Safiyh" last="Taghavi">Safiyh Taghavi</name>
</author>
<author>
<name sortKey="Mccorkle, Sean M" sort="Mccorkle, Sean M" uniqKey="Mccorkle S" first="Sean M" last="Mccorkle">Sean M. Mccorkle</name>
</author>
<author>
<name sortKey="Li, Luen Luen" sort="Li, Luen Luen" uniqKey="Li L" first="Luen-Luen" last="Li">Luen-Luen Li</name>
</author>
<author>
<name sortKey="Malfatti, Stephanie A" sort="Malfatti, Stephanie A" uniqKey="Malfatti S" first="Stephanie A" last="Malfatti">Stephanie A. Malfatti</name>
</author>
<author>
<name sortKey="Monteleone, Denise" sort="Monteleone, Denise" uniqKey="Monteleone D" first="Denise" last="Monteleone">Denise Monteleone</name>
</author>
<author>
<name sortKey="Donohoe, Bryon S" sort="Donohoe, Bryon S" uniqKey="Donohoe B" first="Bryon S" last="Donohoe">Bryon S. Donohoe</name>
</author>
<author>
<name sortKey="Ding, Shi You" sort="Ding, Shi You" uniqKey="Ding S" first="Shi-You" last="Ding">Shi-You Ding</name>
</author>
<author>
<name sortKey="Adney, William S" sort="Adney, William S" uniqKey="Adney W" first="William S" last="Adney">William S. Adney</name>
</author>
<author>
<name sortKey="Himmel, Michael E" sort="Himmel, Michael E" uniqKey="Himmel M" first="Michael E" last="Himmel">Michael E. Himmel</name>
</author>
<author>
<name sortKey="Tringe, Susannah G" sort="Tringe, Susannah G" uniqKey="Tringe S" first="Susannah G" last="Tringe">Susannah G. Tringe</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacteria, Anaerobic (genetics)</term>
<term>Bacteria, Anaerobic (metabolism)</term>
<term>Cell Wall (genetics)</term>
<term>Cell Wall (metabolism)</term>
<term>Cell Wall (microbiology)</term>
<term>Cellulose (analysis)</term>
<term>Cellulose (metabolism)</term>
<term>Metagenome (MeSH)</term>
<term>Populus (metabolism)</term>
<term>Populus (microbiology)</term>
<term>Wood (metabolism)</term>
<term>Wood (microbiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Bactéries anaérobies (génétique)</term>
<term>Bactéries anaérobies (métabolisme)</term>
<term>Bois (microbiologie)</term>
<term>Bois (métabolisme)</term>
<term>Cellulose (analyse)</term>
<term>Cellulose (métabolisme)</term>
<term>Métagénome (MeSH)</term>
<term>Paroi cellulaire (génétique)</term>
<term>Paroi cellulaire (microbiologie)</term>
<term>Paroi cellulaire (métabolisme)</term>
<term>Populus (microbiologie)</term>
<term>Populus (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Cellulose</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Cellulose</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Bacteria, Anaerobic</term>
<term>Cell Wall</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Bactéries anaérobies</term>
<term>Paroi cellulaire</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Bacteria, Anaerobic</term>
<term>Cell Wall</term>
<term>Cellulose</term>
<term>Populus</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Bois</term>
<term>Paroi cellulaire</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Cell Wall</term>
<term>Populus</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Bactéries anaérobies</term>
<term>Bois</term>
<term>Cellulose</term>
<term>Paroi cellulaire</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Metagenome</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Métagénome</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This study describes the composition and metabolic potential of a lignocellulosic biomass degrading community that decays poplar wood chips under anaerobic conditions. We examined the community that developed on poplar biomass in a non-aerated bioreactor over the course of a year, with no microbial inoculation other than the naturally occurring organisms on the woody material. The composition of this community contrasts in important ways with biomass-degrading communities associated with higher organisms, which have evolved over millions of years into a symbiotic relationship. Both mammalian and insect hosts provide partial size reduction, chemical treatments (low or high pH environments), and complex enzymatic 'secretomes' that improve microbial access to cell wall polymers. We hypothesized that in order to efficiently degrade coarse untreated biomass, a spontaneously assembled free-living community must both employ alternative strategies, such as enzymatic lignin depolymerization, for accessing hemicellulose and cellulose and have a much broader metabolic potential than host-associated communities. This would suggest that such a community would make a valuable resource for finding new catalytic functions involved in biomass decomposition and gaining new insight into the poorly understood process of anaerobic lignin depolymerization. Therefore, in addition to determining the major players in this community, our work specifically aimed at identifying functions potentially involved in the depolymerization of cellulose, hemicelluloses, and lignin, and to assign specific roles to the prevalent community members in the collaborative process of biomass decomposition. A bacterium similar to Magnetospirillum was identified among the dominant community members, which could play a key role in the anaerobic breakdown of aromatic compounds. We suggest that these compounds are released from the lignin fraction in poplar hardwood during the decay process, which would point to lignin-modification or depolymerization under anaerobic conditions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22629327</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>12</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2012</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>The metagenome of an anaerobic microbial community decomposing poplar wood chips.</ArticleTitle>
<Pagination>
<MedlinePgn>e36740</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0036740</ELocationID>
<Abstract>
<AbstractText>This study describes the composition and metabolic potential of a lignocellulosic biomass degrading community that decays poplar wood chips under anaerobic conditions. We examined the community that developed on poplar biomass in a non-aerated bioreactor over the course of a year, with no microbial inoculation other than the naturally occurring organisms on the woody material. The composition of this community contrasts in important ways with biomass-degrading communities associated with higher organisms, which have evolved over millions of years into a symbiotic relationship. Both mammalian and insect hosts provide partial size reduction, chemical treatments (low or high pH environments), and complex enzymatic 'secretomes' that improve microbial access to cell wall polymers. We hypothesized that in order to efficiently degrade coarse untreated biomass, a spontaneously assembled free-living community must both employ alternative strategies, such as enzymatic lignin depolymerization, for accessing hemicellulose and cellulose and have a much broader metabolic potential than host-associated communities. This would suggest that such a community would make a valuable resource for finding new catalytic functions involved in biomass decomposition and gaining new insight into the poorly understood process of anaerobic lignin depolymerization. Therefore, in addition to determining the major players in this community, our work specifically aimed at identifying functions potentially involved in the depolymerization of cellulose, hemicelluloses, and lignin, and to assign specific roles to the prevalent community members in the collaborative process of biomass decomposition. A bacterium similar to Magnetospirillum was identified among the dominant community members, which could play a key role in the anaerobic breakdown of aromatic compounds. We suggest that these compounds are released from the lignin fraction in poplar hardwood during the decay process, which would point to lignin-modification or depolymerization under anaerobic conditions.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>van der Lelie</LastName>
<ForeName>Daniel</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Biology Department, Brookhaven National Laboratory, Upton, New York, United States of America. vdlelied@rti.org</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Taghavi</LastName>
<ForeName>Safiyh</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>McCorkle</LastName>
<ForeName>Sean M</ForeName>
<Initials>SM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Luen-Luen</ForeName>
<Initials>LL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Malfatti</LastName>
<ForeName>Stephanie A</ForeName>
<Initials>SA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Monteleone</LastName>
<ForeName>Denise</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Donohoe</LastName>
<ForeName>Bryon S</ForeName>
<Initials>BS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ding</LastName>
<ForeName>Shi-You</ForeName>
<Initials>SY</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Adney</LastName>
<ForeName>William S</ForeName>
<Initials>WS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Himmel</LastName>
<ForeName>Michael E</ForeName>
<Initials>ME</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tringe</LastName>
<ForeName>Susannah G</ForeName>
<Initials>SG</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>05</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>9004-34-6</RegistryNumber>
<NameOfSubstance UI="D002482">Cellulose</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001421" MajorTopicYN="N">Bacteria, Anaerobic</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002473" MajorTopicYN="N">Cell Wall</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002482" MajorTopicYN="N">Cellulose</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054892" MajorTopicYN="Y">Metagenome</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014934" MajorTopicYN="N">Wood</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>09</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>04</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>5</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>5</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>12</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22629327</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0036740</ArticleId>
<ArticleId IdType="pii">PONE-D-11-18288</ArticleId>
<ArticleId IdType="pmc">PMC3357426</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>FEMS Microbiol Ecol. 2009 Oct;70(1):54-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19659746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2010 Jun;101(11):4062-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20122824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2006 Jul;72(7):5069-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16820507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2010 Sep;6(9):e1001129</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20885794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2000 Nov 1;41(2):257-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10966578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14793-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20668243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1995 Jul;61(7):2681-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16535076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Jan;76(1):383-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19915033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2011 Apr;5(4):639-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20962874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Eng Des Sel. 2006 Dec;19(12):555-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17085431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2011 May;5(5):777-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21107444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Extremophiles. 2005 Jun;9(3):229-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15856134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2008 May;45(5):638-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18308593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Dec 21;444(7122):1027-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17183312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2009 Mar;73(1):71-133</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19258534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2009 Jan;70(2):163-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19162284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1997 Oct;63(10):3804-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16535705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2009 May 18;2:10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19450243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2010 Jul 26;49(32):5476-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20589818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Jun 2;312(5778):1355-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16741115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2005 Jun;3(6):510-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15931168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stand Genomic Sci. 2011 Nov 30;5(2):248-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22180827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2000 Jul 14;477(1-2):79-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10899314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2000 Jul 1;33(1):69-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10922505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2004 Jul;150(Pt 7):2018-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15256545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2009;10:421</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20003500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2000 Apr;66(4):1286-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10742201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Mar 4;428(6978):37-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14961025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biodegradation. 2007 Dec;18(6):793-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17308882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2005 Jun;3(6):470-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15931165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1990 Jun;56(6):1919-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2200342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2010 May;4(5):642-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20090784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jan;38(Database issue):D382-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19864254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2009 Oct-Nov;70(15-16):1812-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19559449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2001 Dec;17(12):1093-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11751217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2000 Jul 14;1480(1-2):83-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11004557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2011 Jun 14;50(23):5096-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21534568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2005 Aug;69(8):1483-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16116275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 1998 Dec 15;124(2-3):221-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10049808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007;35(21):7188-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17947321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2008 Aug 31;136(1-2):77-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18597880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2011 Jul;77(13):4499-507</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21551287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mutat Res. 1972 Aug;15(4):395-409</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4625593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jan;37(Database issue):D233-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18838391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010;5(1):e8812</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20098679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2008;77:521-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18518825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 1995 Sep 15;3(9):853-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8535779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2011 Aug 04;4(1):23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21816041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Jan 28;331(6016):463-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21273488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Sep 2;105(35):12932-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18725643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2004;58:521-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15487947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Biotechnol. 2010 Sep;3(5):531-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20953417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Nov 22;450(7169):560-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18033299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1977 Feb;33(2):289-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">848953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Feb 14;278(7):5377-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12464603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Oct 8;330(6001):219-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20929773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Rev Mar Sci. 2011;3:347-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21329209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2010 Apr 20;49(15):3305-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20230050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 2010 Jun;95(6):315-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20211242</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>État de New York</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Adney, William S" sort="Adney, William S" uniqKey="Adney W" first="William S" last="Adney">William S. Adney</name>
<name sortKey="Ding, Shi You" sort="Ding, Shi You" uniqKey="Ding S" first="Shi-You" last="Ding">Shi-You Ding</name>
<name sortKey="Donohoe, Bryon S" sort="Donohoe, Bryon S" uniqKey="Donohoe B" first="Bryon S" last="Donohoe">Bryon S. Donohoe</name>
<name sortKey="Himmel, Michael E" sort="Himmel, Michael E" uniqKey="Himmel M" first="Michael E" last="Himmel">Michael E. Himmel</name>
<name sortKey="Li, Luen Luen" sort="Li, Luen Luen" uniqKey="Li L" first="Luen-Luen" last="Li">Luen-Luen Li</name>
<name sortKey="Malfatti, Stephanie A" sort="Malfatti, Stephanie A" uniqKey="Malfatti S" first="Stephanie A" last="Malfatti">Stephanie A. Malfatti</name>
<name sortKey="Mccorkle, Sean M" sort="Mccorkle, Sean M" uniqKey="Mccorkle S" first="Sean M" last="Mccorkle">Sean M. Mccorkle</name>
<name sortKey="Monteleone, Denise" sort="Monteleone, Denise" uniqKey="Monteleone D" first="Denise" last="Monteleone">Denise Monteleone</name>
<name sortKey="Taghavi, Safiyh" sort="Taghavi, Safiyh" uniqKey="Taghavi S" first="Safiyh" last="Taghavi">Safiyh Taghavi</name>
<name sortKey="Tringe, Susannah G" sort="Tringe, Susannah G" uniqKey="Tringe S" first="Susannah G" last="Tringe">Susannah G. Tringe</name>
</noCountry>
<country name="États-Unis">
<region name="État de New York">
<name sortKey="Van Der Lelie, Daniel" sort="Van Der Lelie, Daniel" uniqKey="Van Der Lelie D" first="Daniel" last="Van Der Lelie">Daniel Van Der Lelie</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002884 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002884 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22629327
   |texte=   The metagenome of an anaerobic microbial community decomposing poplar wood chips.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22629327" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020